Home Hydration Analogs Hydration Bridging Hydrophobic Surfaces Coil Formation
Beta-Sheet Formation Beta-Turn Formation Carboxypeptidase A Assembly References

SURFACE HYDRATION OF POLYPEPTIDES AND PROTEINS

1

2

3

4

5

6

7

8

9

10

REFERENCES


1. M. F. Chaplin, Nature Rev. Mol. Cell Biol. 7: 861-866 (2006). Do we underestimate the importance of water in cell biology?  See also, N. R. Pace Cell 65: 531-534 (1991). Origin of Life – Facing up to the physical setting. Also, J. Glanz, Science 276: 505 (1997). Cell Biology: Force-Carrying Web Pervades Living Cells. Also, A. Kaufmann, The Origins of Order: Self Organization and Selection in Evolution. (Oxford University Press Inc., 1992).

2. C. B. Anfinsen, E. Haber, M. Sela and F. H. White Jr., Proc. Natl. Acad. Sci. USA 47(9): 1309-1314 (1961). The kinetics of formation of native ribonuclease during oxidation of the reduced peptide chain. Also, C. B. Anfinsen, Science 181: 223-230 (1973). Principles governing the folding of proteins.

3. K. A. Dill and J. L. MacCallum, Science 338: 1042-1046 (2012). The Protein Folding Problem, 50 Years On.

4. A. J. Patel, P. Varilly, S. N. Jamadagni, M. F. Hagan, D. Chandler and S. Garde,  J. Phys. Chem. B 116(8): 2498 (2012). Sitting on the Edge: How Biomolecules use Hydrophobicity to Tune their Interactions and Functions. See also, D. Chandler, Nature 437: 640 (2005). Interfaces and the Driving Force of Hydrophobic Assembly.  Also, B. J. Berne, J. D. Weeks and R. Zhou. Ann. Rev. Phys. Chem. 60: 85-103 (2009). Dewetting and Hydrophobic Interaction in Physical and Biological Systems.  Also, S-Y. Sheu and D-Y. Yang. J. Phys. Chem. 114(49): 16558-16566 (2010). Determination of Protein Surface Hydration Shell Free Energy of Water Motion: Theoretical Study and Molecular Dynamics Simulation. Also, B. Halle, Philos. Trans. R. Soc. Lond. Biol. Sci. 359: 1207-1224 (2004). Protein hydration. Also, E. H. Kellog, O. F. Lange and D. Baker, J. Phys. Chem. B. 116(37): 11405 (2012).  Optimization of discrete models of protein folding. Also, E. H. Kellogg, O. F. Lange and D. Baker, Journal of Phys. Chem. B 116(37): 11405 (2012). Evaluation and optimization of discrete state models of protein folding. Also, E. K. Modig, E. Liepinsh, G. Otting, and B. Halle, J. Am. Chem. Soc. 126: 102-114 (2004). Dynamics of protein and peptide hydration.

5. Y. L. A. Rezus and H. J. Bakker, Proc. Nat. Acad. Sci. USA 103(49): 18417-18420 (2006). Effect of urea on the structural dynamics of water.

6. R. L. Baldwin and G. D. Rose, Proc. Natl. Acad. Sci. USA 113(44): 12462-12466 (2016). How the hydrophobic factor drives protein folding. See Also, S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, V. Heugen, M. Garebele, D. M. Leitner and M. Havenith, Proc. Natl. Acad. Sci. USA 104(53): 20749-20752 (2007). An extended dynamic hydration shell around proteins. Also, F. Mallamace, et al. J. Phys. Chem. B. 115(48): 14280-14299 (2011). A Possible Role of Water in the Protein Folding Process.

7. H. E. Stanley et al. J, Phys. Condens. Matter 21: 504105-504118 (2009). Heterogeneities in Confined Water and Protein Hydration Water. See also, P. Gallo et al. Chem. Reviews 116: 7463-7500 (2016). A Tale of Two Liquids. Also, N. Vinogradov and R. H. Linnell, Hydrogen Bonding (Van Nostrand Reinhold, 1971).

8. H. S. Frank, Science 169: 635 (1970). The Structure of Ordinary Water. See also, F. Franks (ed.) Water – A Comprehensive Treatise. (Plenum, 1972).  Also, D. Eisenberg and W. Kauzmann, Structure and Properties of Water. (Oxford University Press, 1969).  D. P. Stevenson, Structural Chemistry and Molecular Biology. (Freeman, 1968).  Also, P. G. Kosolik and I. M. Svishchev, Science 265: 1219 (1994). Spatial Structure in Liquid Water. Also, S. Pnevmatikos, Phys. Rev. Lett. 60(15): 1534 (1988). Schematic one-dimensional structure.

9. Y. Zubavicus and M. Grunze, Science 304: 974-976 (2004). New Insights into the Structure of Water with Ultrafast Probes.

10. J. R. Hoyland and L. B. Kier, Theor. Chim. Acta. 15: 1-11 (1969). Molecular orbital calculations for hydrogen-bonded forms of water. See also, J. Del Bene and J. A. Pople, J. Chem. Phys. 52: 48-61 (1970). Theory of Molecular Interactions: Molecular Orbital Studies of Water.

11. A. H. Narten and H. A. Levy, Water – A Comprehensive Treatise pp. 311-332 (Plenum Press, 1972). Surface of Liquid Water: Scattering of X-rays.

12. A. Tokmakoff, Science 317: 54-55 (2007). Shining light on the rapidly-evolving structure of water.

13. E. D. Isaacs, et al., Physical Rev. Letters 82(3): 600 (1999). Covalency of the Hydrogen Bond in Ice: A Direct X-Ray Measurement.

14. E. Mayer and A. Hallbrucker, Nature 325: 601 (1987). Cubic ice from liquid water.  See also, A. K. Soper, Science 297: 1288 (2002). Water and Ice. Also, B. Kamb, Structural Chemistry and Molecular Biology, pp. 507-542. (Freeman, 1968). Ice Polymorphism and the Structure of Water.

15. P. Sykes, A Guide to Mechanisms in Organic Chemistry (Pearson Prentice Hall, 1986). See also, M. A. Fox and J. K. Whitsell, Organic Chemistry, 3rd Ed. (Jones and Bartlett, 2004).

16. J. L. Ranck, L. Mateu, D. M. Sadler, A. Tardieu, T. Gulik-Krzywicki and V. Luzzati, J. Mol. Biol. 85: 249 (1974). Order-disorder conformational transitions of hydrocarbon chains of lipid.

17. D. E. Woessner and B. S. Snowden, Jr., Ann. N.Y. Acad. Sci. 204: 113-124  (1973). A pulsed NMR study of dynamics and ordering of water in interfacial systems.

18. C. Y. Lee, J. A. McCammon and P.  J. Rossky, J. Chem. Phys. 80(9): 4448 (1984). The structure of liquid water at extended hydrophobic surfaces.  See also, L. F. Scatena, M. G. Brown and G. L. Richmond, Science 292: 908-9125 (2001). Water at hydrophobic surfaces: Weak Hydrogen Bonding and Strong Orientational Effects.  Also, G. W. Robinson and C. H. Cho, Biophys. J. 77: 3311-3318 (1999). The Role of Water in Protein Unfolding.    

19. D-S. Yang and A. H. Zewail, Proc. Nat. Acad. Sci. USA 106(11): 4122-4126 (2009).  Ordered water structure at hydrophobic graphite interfaces observed by 4D ultrafast electron crystallography. Also, C-Y. Ruan, V. A. Lobastov, F. Vigliotti, S. Chen and A. H. Zewail, Science 304: 80-84 (2004). Ultrafast Electron Crystallography of Interfacial Water.

20. K. S. Pal, J. Preon and A. H. Zewail, Proc. Natl. Acad. Sci. USA 99(24): 15297-15302 (2002). Ultra-fast surface hydration dynamics and expression of protein functionality: Alpha Chymotrypsin.

21. M. W. Fryereisen, D. Feller and D. A. Dixon, J. Phys. Chem. 100(8): 2993-2997 (1996). Hydrogen Bond Energy of the Water Dimer.

22. R. Lumry and S. Rajender, Biopolymers 9: 1125-1227 (1970). Entropy-Entropy Compensation Phenomena in Water Solutions of Proteins and Small Molecules: A Ubiquitous Property of Water.

23. A. J. Minbiao M. Odelius and K. J. Gaffney, Science 328: 1003-1005 (2010). Large Angular Jump Mechanism observed for hydrogen-bond exchange in aqueous perchlorate solution. See also, D. Lange and J. T. Hynes, Proc. Nat. Acad. Sci. USA 104: 11167 (2007). Reorientation Dynamics of Water Molecules in Anionic Hydration Shells. Also, J. L. Skinner, Science 328: 985-986 (2010). Following the Motions of Water Molecules in Aqueous Solutions. Also, J. D. Cruzan et. al., Science 271: 59 (1996). Quantifying Hydrogen Bond Cooperativity in Water. Also, N. E. Tuckerman, D. Marx, D. Klein and M. Parrinello, Science 275: 817 (1997).  On the Quantum Nature of the Shared Proton in Hydrogen Bonds. Also, P. Kumar and H. E. Stanley, J. of Physical Chemistry B. 115(48): 13971-13988 (2011). Liquid water at supercooled temperatures exhibits extremely ordered ice-like forms.  See also, Y. Li, J. Li and F. Wang, Proc. Natl. Acad. Sci. USA 110 (30): 12209-12212 (2013). Liquid-liquid transition in supercooled water suggested by microsecond simulation. Also, A. I. Kolesnikov et al., Physical Review Letters, 116: 167802 (2016). Quantum Tunneling of Water in Beryl: A New State of the Water Molecule.

24. E. Schrodinger, Math. Proc. of the Cambridge Phil. Soc. 31(04): 555 (1935). Discussion of the probability relations between separate systems. See also, E. Schrodinger, What is Life? with Mind and Matter (Cambridge University Press, 1944 and 1967).

25. W. Holtkamp, G. Kokik, M. Jager, J. Helstaet, A. Komar and M. A. Rodina, Science 350: 1104-1107 (2015). Cotranslational protein folding on the ribosome monitored in real time. See also, M. Shtilerman, G. H. Lorimer and S. W. Englander, Science 284: 822-824 (1999). Chaperone Function: Folding by Forced Unfolding.

26. J. M. Rogers and J. D. Weeks, Proc. Nat. Acad. Sci. USA, 105(49): 19136-19141 (2008). Interplay of Local Hydrogen-Bonding and Long-Ranged Dipolar Forces in Simulations of Confined Water.  See also, P. Ball, Chem. Rev. 108(1): 74 (2008). Water as an active constituent in cell biology.

27. H. Eyring and M. S. Jhon, Significant Liquid Structures (John Wiley and Sons, 1969, p. 115). The Domain Theory of the Dielectric Constant of H-Bonded Liquids. Also, M. E. Hobbs, M. S. Jhon and H. Eyring. Proc. Natl. Acad. Sci. USA 56(1): 31-38 (1966).

28. O. F. Mohammed, D. Pines, J. Dreyer, E. Pines and E. T. J. Nibbering, Science 310:  83 (2005). Sequential Proton Transfer through Bridges in Acid-Base Reactions. See also, M. G. Brown, J. G. Loeser and R. J. Saykally, Science 271: 59 (1996). Quantifying Hydrogen-bond Cooperativity in Water.  Also, A. J. Horsewell, N. H. Jones and R. Caciuffo, Science 291: 100 (2001). Evidence for coherent proton tunneling in a hydrogen bond network. Also, J. Lin, H. A. Balabin and D. H. Beratan, Science 310: 1311 (2005). The Nature of Aqueous Tunneling Pathways. Also, U. S. Raghavender, et al., J. Phys. Chem. B. 115(29): 9236-9243 (2011). Entrapment of a water wire in a hydrophobic peptide channel with an aromatic lining. Also, S. Numa, Biochem. Soc. Symp. 52: 119 (1986). Molecular Basis for the Function of Ionic Channels.

29. M. Fung, Science 190: 800-802 (1975). Orientation of water in striated frog muscle.  Also, J. R. Grigera and H. J. C. Berendsen, Biopolymers 18(1): 47-52 (1978). The molecular detail of collagen hydration.  Also, J. Bella, B. Brodsky and H. R. Berman, Structure 3(9): 893-906 (1995). Hydration structure of a collagen peptide.

30. J. V. Howarth, R. D. Keynes and J. M. Ritchie, J. Physiol. 194: 745 (1968). Heat released from nerve membrane during depolarization. See also, D.–G. Margineau and E. Schoffeniels, Proc. Natl. Acad. Sci. USA 74(9): 3810-3812 (1977). Molecular events and energy changes during the action potential. Also, L. B. Cohen, B. Hille and R. D. Keynes, J. Physiol. 211: 495 (1970). Increased order in nerve membrane depolarization. Also, D. Debanne, E. Campanac, . Bialowas, E. Carlier and G. Alcaraz, Physiological Reviews 91(2): 555 (2011). Axon Physiology. Also, M. Prats, J. Teissie and J. Tocanne, Letters to Nature 322: 756 (1986). Lateral proton conduction at lipid-water interfaces.

31. J. D. Watson and F. H. C. Crick, Nature 171: 737-738 (1953). Molecular Structure of Nucleic Acids. A Structure of Deoxyribonucleic Acid. See also, J. D. Watson, The Double Helix (A Signet Book, The New American Library, 1968).  Also, R. Franklin and R. G. Gosling, Nature 171: 740-741 (1953). Molecular Configuration in Sodium Thymonucleate.

32. S. K. Pal, L. Zhao, T. Xia and A. H. Zewail, Proc. Nat. Acad. Sci. USA 140(24): 13746 (2003). Ultrafast Hydration of DNA.

33. P. Auffinger and E. Westhof, J. Mol. Biol. 268: 118-136 (1997). Water and Ion Binding around RNA and DNA. See also, V. Makarov, B. M. Petitt and M. Feig, Acc. Chem. Res. 35: 376-384 (2002). Solvation and hydration of proteins and nucleic acids: A Theoretical simulation and experiment. Also, S. Pal, P. K. Maiti and B. Bagchi, J. Phys.: Condens. Matter 17: S4317-S4331 (2005). Anisotropic and sub-diffusive water motion at the surface of DNA. See also, J. J. Bonvin, M. Sunnerhagen, G. Otting and W. F. van-Gunsteren, J. Mol. Biol. 282:  859-873 (1998). Water Molecules in DNA Recognition II: A Molecular Dynamics View of the trp Operator.  Also, S. Leikin, D. C. Rau and V. A. Parsegian, Physical Review A, 44(8): 5272-5278 (1991). Measured entropy and enthalpy of hydration as a function of distance between DNA double helices. Also, B. Gu, F. S. Zhang, Z. P. Wang and H. Y. Zhou, Phys, Rev. Lett. 100: 88104 (2008). Solvent-induced DNA conformational transition. See also, W. Fuller, T. Forsyth and A. Mahendrasingam, Phil. Trans. R. Soc. Lond. B259: 1237-1248 (2004). Water-DNA Interactions as studied by X-ray and neutron fiber diffraction.

34. E. J. Corey and X-M. Cheng, The Logic of Chemical Synthesis (New York, Wiley, 1995).  See also, R. B. Woodward et al., J. Am. Chem. Soc. 76(18): 4749-4751 (1954), The Total Synthesis of Strychnine.

35. L. Pauling and R. B. Corey, Proc. Natl. Acad. Sci. USA 37: 251 (1951). The pleated sheet. A new layer configuration of polypeptide chains.  See also, D. Voet and J. G. Voet, Biochemistry 3rd ed. (Hoboken NJ, Wiley, 2004).

36. B. Halle, Philos R Soc. London B Biol Sci. 359: 1207-1223 (2004). Protein Hydration Dynamics in Solution: A Critical Survey.

37. F. A. Quiocho and W. N. Lipscomb, Adv. In Protein Chem. 25: 1 (1971). Carboxypeptidase.

38. C. A. Chatzidimitriou-Dreissmann, Physica. B. 385(1): 1 (2006). Attoscond Quantum Entanglement in Neutron Compton Scattering from Water in the KeV Range.

39. K. Lindorff-Larsen, P. Stefano, R. O. Dror and D. E. Shaw, Science 334: 517-520 (2011). How Fast-Folding Proteins Fold

Download PDF of this page  Download PDF of All Pages